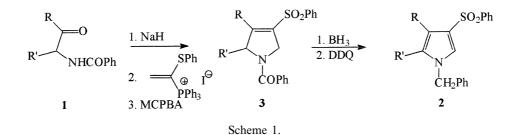


Tetrahedron Letters 41 (2000) 8969-8972

A versatile approach to 3-alkyl and 2,3-dialkylpyrroles

Ian Burley, Biljana Bilic, Alan T. Hewson* and Jillian R. A. Newton

Division of Chemistry and Biomedical Research Centre, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK

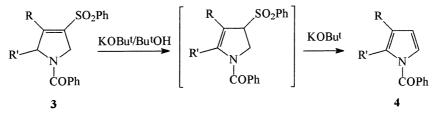

Received 17 July 2000; revised 30 August 2000; accepted 14 September 2000

Abstract

A route is described towards *N*-benzoyl-3-alkyl and *N*-benzoyl-2,3-dialkyl pyrroles from α -amidoketones via an intramolecular Wittig reaction to afford 4-phenylthio-3-pyrrolines which are then oxidised to the corresponding sulphones and aromatised by treatment with potassium *t*-butoxide. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: pyrrolines; aromatisation; pyrroles; intramolecular Wittig.

The pyrrole unit occurs widely in a range of natural products, drugs, dyes and polymers¹ and its synthesis continues to attract attention.^{2–5} A wide variety of chemistry has been used, but most of the available methods lead to a pyrrole which is substituted at various positions with functional groups such as esters, and which requires further synthetic operations such as reduction or hydrolysis/decarboxylation to afford the simple alkyl substituted heterocycle. Routes to 3-alkyl pyrroles are attractive in terms of the specific importance of such compounds in preparing conducting polymers and natural products,⁶ and routes to 2,3-dialkylpyrroles are not common.^{7,8} We have previously reported⁹ a route to the pyrrole ring system which relies on an intramolecular Wittig reaction to build up the heterocyclic ring from the readily available



* Corresponding author. Tel: +44 (0) 114 225 3075; e-mail: a.t.hewson@shu.ac.uk

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01591-4

 α -amidoketones 1, followed by functional group manipulation to afford the *N*-benzyl-4-phenyl-sulphonylpyrroles 2 (Scheme 1).

Although the method is versatile in terms of R and R', it suffers in that the ring is substituted with the phenylsulphonyl group, which is not always easy to remove from such systems, and the nitrogen is *N*-benzylated rather than being protected with a more easily removable acyl group. We describe here a simple extension of the chemistry in Scheme 1 which circumvents both of these problems. Treatment of the intermediate 4-phenylsulphonyl-3-pyrrolines $3a-f^9$ with potassium *tert*-butoxide gave directly, in good yield, the 2,3-dialkyl pyrroles 4a-f. It is presumed that the reaction proceeds by deconjugation of the vinyl sulphone, followed by elimination of benzene sulphinic acid (Scheme 2); the hindered base appears not to react with the N-COPh group during the aromatisation process. *N*-Acyl pyrroles are known to readily hydrolyse with aqueous hydroxide at room temperature,¹⁰ so the procedure described here allows ready access to the corresponding pyrroles.

Scheme 2.

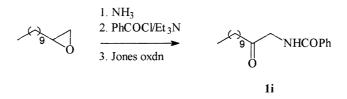
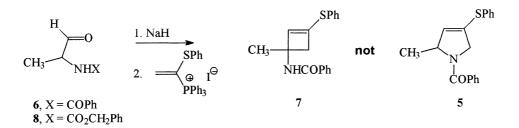

The method was then extended to afford the 3-alkyl pyrroles 4g-i (Table 1). The precursor ketone 1g was prepared (80%) from the sodium salt of *N*-benzoylglycine (acetic anhydride/pyr-idine to afford the oxazolone then aqueous reflux);¹¹ 1h was prepared (52%) from *N*-benzoylglycine (1 equiv. BuLi then 3 equiv. EtMgBr, THF/ether, -78° C);¹² 1i was prepared (44% overall), as shown in Scheme 3. These three approaches to the α -amidoketones 1 illustrate how readily a variety of substituents R and R' can be introduced into the pyrrole ring using this methodology.

Table 1

Entry	R	R′	Yield (%) for $1 \rightarrow 3^a$	Yield (%) for $3 \rightarrow 4^{a}$
a	CH ₃	CH ₃	85	93
b	CH_3CH_2	CH ₃	78	72
с	CH ₃	PhCH ₂	56	79
d	CH ₃ CH ₂	$PhCH_{2}$	51	78
e	CH ₃	$(CH_3)_2CH$	52	70
f	CH ₃	$CH_3S(CH_2)_2$	62 ^ь	61 ^b
g	CH ₃	H	69	83
h	CH ₃ CH ₂	Н	65	78
i	$CH_3(CH_2)_9$	Н	59	65

^a For **3a-3e** see Ref. 9; for **4a** see Ref. 13; all other compounds were characterised by the usual analytical and spectroscopic methods.


^b R' is $CH_3S(CH_2)_2$ in 1 but $CH_3SO_2(CH_2)_2$ in 3 and 4.

Scheme 3.

Typical procedure for **3** to **4**: The sulphone **3a** (0.52 g, 1.5 mmol) was dissolved in dry THF (20 cm³), and 1 M potassium *tert*-butoxide in *tert*-butanol (1.5 cm³, 1.5 mmol) was added. The solution was refluxed for 2 hours, the THF was removed under reduced pressure and the residue was partitioned between water and ethyl acetate. Flash chromatography (ethyl acetate–petroleum spirit, 1:4) gave **4a**¹³ as an oil (0.28 g, 93%); (found M⁺ 199.0985. C₁₃H₁₃NO requires 199.0997); $\delta_{\rm H}$ (250 MHz; CDCl₃) 2.06 (3H, s, CH₃), 2.48 (3H, s, CH₃), 6.02 (1H, d, *J* 3.3, pyrrole H-4), 6.72 (1H, d, *J* 3.3, pyrrole H-5), 7.44–7.61 (3H, m, ArH), 7.72 (2H, m, ArH); $\delta_{\rm C}$ (62.5 MHz; CDCl₃) 11.2, 12.6, 113.6, 121.2, 122.1, 128.6, 129.9, 132.3, 135.1, 169.5.

It was expected that application of the method to α -amidoaldehydes would afford 2alkylpyrroles **5**, but the intramolecular Wittig reaction took a different course. Thus the aldehyde **6**, obtained by oxidation of *N*-benzoylalaninol with DMSO/(COCl)₂/Et₃N, on treatment with NaH followed by the 1-phenylthiovinyl triphenylphosphonium iodide gave, in 35% yield, the cyclobutene **7**, mp 119–121°C, $\delta_{\rm H}$ (250 MHz; CDCl₃) 1.65 (3H, s, CH₃), 2.70 (1H, d, *J* 12.5, CH), 2.90 (1H, d, *J* 12.5, CH), 6.05 (1H, s, C=CH), 6.75 (1H, br s, NH), 7.2–7.5 (8H, m, ArH), 7.6–7.85 (2H, m, ArH). Apparently in changing from the ketone **1a** to the aldehyde **6** as substrate, there is a change in the relative acidities of the NH proton and the α -H such that, for **6**, it is the α -H which is removed. It is worth noting that use of the *N*-Cbz protected aldehyde **8** gave a complex mixture under the conditions of the intramolecular Wittig reaction and no cyclised product was isolated (Scheme 4).

Scheme 4.

Acknowledgements

We thank EPSRC and Sittingbourne Research Centre for financial support (I.B.) for this work.

References

- 1. Comprehensive Heterocyclic Chemistry; Katritzky, A.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 2, pp. 1–257.
- Sundberg, R. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 2, pp. 119–206.
- 3. Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 2849.
- 4. Grigg, R.; Savic, V. J. Chem. Soc., Chem. Commun. 2000, 873.
- 5. Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M.; Elsegood, M. R. J.; Clegg, W. J. Chem. Soc., Chem. Commun. 1999, 289.
- 6. Mendez, J. M.; Flores, B.; Leon, F.; Martinez, M. E.; Vazquez, A.; Garcia, G. A.; Salmon, M. Tetrahedron Lett. 1996, 37, 4099.
- 7. Severin, T.; Poehlmann, H. Chem. Ber. 1977, 110, 491.
- 8. Chelucci, G.; Marchetti, M. J. Heterocycl. Chem. 1988, 25, 1135.
- 9. Burley, I.; Hewson, A. T. Synthesis 1995, 1151.
- 10. Cipiani, A.; Linda, P.; Savelli, G. J. Heterocycl. Chem. 1979, 16, 673.
- 11. Attenburrow, J.; Elliott, D. F.; Penny, G. F. J. Chem. Soc. 1948, 310.
- 12. Knudsen, C. G.; Rapoport, H. J. Org. Chem. 1983, 48, 2260.
- 13. Guy, R. W.; Jones, R. A. Aust. J. Chem. 1966, 19, 107.